

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IV Year – ISemester

S. No.	Course	Category	L	Т	Р	Credits
1	Microwave and Optical Communication Engineering	PC	3	0	0	3
2	Data Communications & Computer networks	PC	3	0	0	3
3	Digital Image and Video Processing	PC	3	0	0	3
4	Professional Elective (PE3)	PE		0	0	3
5	Professional Elective (PE4)	PE	3	0	0	3
6	Internet of Things Lab	LC	0	0	3	1.5
7	Microwave and Optical Communication Engineering LAB	LC	0	0	3	1.5
8	Project - Part I	PR	0	0	6	3
			Su	b-Tot	al	21

IV Year – II Semester

S. No.	Course	Category	L	Т	Р	Credits
1	Professional Elective (PE5)	PE	3	0	0	3
2	Open Elective (OE2)	OE	3	0	0	3
3	Project - Part II	PR	0	0	18	9
			Sub-Total			15
			Total			160

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IV Year - I Semester		L	Т	P	С			
		3	0	0	3			
SMART SENSORS								
	(Professional Elective 3)							

OBJECTIVE:

To make student to acquire the knowledge on types of sensors/transducers, working principles, selection procedure, applications of sensing systems

UNIT – I

Introduction to Measurement: Measurement units, applications, elements, choosing appropriate measuring instruments. Instrument Types and Performance Characteristics: Review of instrument types, Static characteristics, dynamiccharacteristics

Error during measurement process: Sources of systematic error, reduction and quantification of systematic errors, random errors, aggregation of measurement system errors.

Calibration: Calibration of measuring instruments, Primary calibration, secondary calibration and field calibration. Calibration methods for different parameters (temperature, pressure, humidity, flow...etc.). Automatic Calibration mechanisms.

UNIT – II

Temperature Sensors: Thermo-resistive, Resistance Temperature Detectors, Silicon Resistive, Thermistors, Semiconductor, Optical, Acoustic, Piezoelectric

Humidity and Moisture Sensors: Capacitive, Electrical Conductivity, Thermal Conductivity, Optical Hygrometer, Time Domain Reflectometer.

Pressure and Force Sensors: Mercury Pressure, Bellows, Membranes, and Thin Plates, Piezoresistive, Capacitive, Optoelectronic, Vacuum, Strain Gauges, Tactile, Piezoelectric Force **Applications:** Case studies in processing industries, indoor environment monitoring in offices,

cold storages UNIT – III

Occupancy and Motion Detectors: Ultrasonic, Microwave Motion, Capacitive Occupancy, Visible and Near-Infrared Light, Far-Infrared Motion, PIR Motion, Position, Displacement, and Level Sensors: Potentiometric, Gravitational, Capacitive, Inductive and Magnetic, Optical, Ultrasonic, Radar

Velocity and Acceleration Sensors: Capacitive Accelerometers, Piezoresistive Accelerometers, Piezoelectric Accelerometers, Thermal Accelerometers, Heated-Plate Accelerometer, Heated-Gas Accelerometer, Gyroscopes, Piezoelectric Cables

Applications: Case studies in manufacturing industries, robotics

$\mathbf{UNIT} - \mathbf{IV}$

Flow Sensors: Pressure Gradient Technique, Thermal Transport, Ultrasonic, Electromagnetic, and Micro flow, Coriolis Mass Flow, Acoustic Sensors: Resistive Microphones, Fiber-Optic, Piezoelectric, Solid-State microphone, Light & Radiation Sensors: Photodiodes, Phototransistor, Photo resistors, Thermal detectors

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Chemical Sensors: Metal-Oxide Chemical, ChemFET, Electro-chemical, Potentiometric, Conduct metric, Amperometric, Optical Chemical, Mass Detector

Applications: Case studies in processing industries, oil and gas industries, water SCADA, pharmaceutical industries

UNIT – V

Introduction to wireless sensor networks, Challenges for wireless sensor networks, Applications for wireless sensor networks, enabling technologies for wireless sensor networks.

Single node architecture – Hardware components, Energy consumption of Sensor nodes (only Operation states with different power consumption, Relationship between computation and communication, Power consumption of sensor and actuators is included), Deployment environments

Sensor Network Architecture - Sensor Network Scenarios, Optimization goals and figures of merit, Design principles of WSN, Service interfaces of WSNs, Gateway-concepts.

TEXT BOOKS:

- 1. Measurement and Instrumentation Principles Morris, AlanS
- 2. An Introduction to Error Analysis by John R.Taylor
- 3. Sensor Technology Handbook, John S.Wilson
- 4. Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks" John-Wiley, First-Edition-2014.

REFERENCE BOOKS

- 1. Mechanical Measurements Beckwith, Marangoni, Lienhard
- 2. Measurement of Systems Application and design Earnest O.Doeblin
- 3. Electronic Instrumentation and Measurement Technique Albert DHelfrick
- 4. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, AndApplications", John Wiley, 2007.

Course Outcomes : The student will be able to

- Understand measuring parameters, measuring systems, effects of environment, characteristics and parameters to be considered for designing an instrument
- Understand different types of sensors/transducers, working principles, selection procedure, applications of sensingsystems
- Understand Challenges and applications of sensors and sensornetworks
- Select a sensor/sensing system for arequirement
- Test, install and collect the data from a group ofsensors.
- Derive sensor-based solution for different applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF CIVIL ENGINEERING

PROFESSIONAL	PE-501	L	Т	Р	С
ELECTIVE		3	0	0	3
	I b) REMOTE SENSING AND GIS				

Course Learning Objectives:

The course is designed to,

- 1. Introduce the basic principles of Remote Sensing and GIS techniques.
- 2. Learn various types of sensors and platforms.
- 3. Learn concepts of visual and digital image analysis.
- 4. Understand the principles of spatial analysis.
- 5. appreciate application of RS and GIS to Civil Engineering

Course outcomes

At the end of the course the student will be able to

- a. Be familiar with ground, air and satellite-based sensor platforms.
- b. Interpret the aerial photographs and satellite imageries.
- c. Create and input spatial data for GIS application.
- d. Apply RS and GIS concepts for application in Civil Engineering.

Course Articulation Matrix:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	3	2	-	-	2	-	-	-	2	-	-	2	3	2	3	2
$\begin{bmatrix} CO\\ 2 \end{bmatrix}$	2	1	1	3	2	2	2	1	1	3	2	2	2	2	2	1
CO 3	-	1	1	2	2	-	2	2	2	2	2	2	2	-	3	2
CO 4	-	2	3	3	2	3	3	3	2	3	3	2	2	2	2	2

1 - Slightly 2 - Moderately 3 – Substantially

SYLLABUS:

UNIT – I

Introduction to Remote sensing: Basic concepts of remote sensing, electromagnetic radiation, electromagnetic spectrum, interaction with atmosphere, energy interaction with the earth surfaces, characteristics of remote sensing systems, types of resolutions - advantages & limitations, types of sensors, airborne remote sensing, space borne remote sensing, image data characteristics, digital image data formats-band interleaved by pixel, band interleaved by line, band sequential, IRS, LANDSAT, SPOT & Recent satellite.

UNIT – II

Image analysis: Introduction, elements of visual interpretations, digital image processing- image preprocessing, image enhancement, image classification, supervised classification, unsupervised classification.

UNIT – III

Geographic Information System: Basic Principles, components, application areas of GIS, map projections. Data entry and preparation: spatial data structures, raster and vector data formats, data inputs,

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF CIVIL ENGINEERING

data manipulation, data retrieval, data analysis and data display.

$\mathbf{UNIT} - \mathbf{IV}$

Spatial data analysis: Introduction, overlay function-vector overlay operations, raster overlay operations, arithmetic operators, comparison and logical operators, conditional expressions, overlay using a decision table, network analysis-optimal path finding, network allocation, network tracing.

UNIT – V

RS and GIS applications: Land cover and land use, agriculture, forestry, geology, geomorphology, urban & transportation, Hydrology and Water Resources: Flood zoning and mapping, groundwater prospects, groundwater quality monitoring and potential recharge zones, watershed management of application with case studies.

TEXTBOOKS:

- 1. 'Remote Sensing and GIS', by Bhatta B, Oxford University Press, (2011) 2nd Edition'.
- 'Remote Sensing and Image Interpretation, by Lille sand, T.M, R.W. Kiefer and J.W. Chipman, Wiley India Pvt. Ltd., (2015), 7th Edition.
- 3. 'Remote Sensing Models and Methods for Image Processing' by Robert A Schowenger, Elsevier publishers, (2009).
- 4. 'Fundamentals of Remote Sensing' by George Joseph, Universities Press, (2013) 3rd Edition.
- 'Fundamentals of Geographic Information Systems' by Michael N. Demers, Wiley India Pvt. Ltd, (2012) 4th Edition.

REFERENCES:

- 1. 'Remote Sensing and its Applications' by Narayan LRA, Universities Press, 2012.
- 'Concepts and Techniques of Geographical Information System' by Chor Pang Lo and Albert K.W. Yeung, Prentice Hall (India), (2016) 2nd Edition.
- 'Introduction to Geographic Information Systems' by Kang Tsung Chang, McGraw Hill Higher Education, (2020) 9th Edition.
- 4. 'Basics of Remote sensing & GIS' by S. Kumar, Laxmi Publications, New Delhi, 2005.
- 5. 'Principals of Geographical Information Systems' by Burrough P A and R.A. McDonnell, Oxford University Press, 2006.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA–533003, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

III Voor I Comostor		L	Т	Р	С
III Year-I Semester		3	0	0	3
	NANO TECHNOLOGY (<mark>OE-1)</mark>				

Course objectives:

- 1) To understand the nano-structured materials and their applications.
- 2) To gain knowledge about the nano crystalline materials, their properties and defects.
- 3) To understand various techniques of nanofabrication.
- 4) To identify the tools to characterize nano materials.
- 5) To analyze the applications of nano materials.

UNIT-I:

INTRODUCTION: History and Scope, Classification of Nano structured Materials, Fascinating Nanostructures, and applications of nano-materials, challenges and future prospects.

UNIT-II:

UNIQUE PROPERTIES OF NANO MATERIALS: Microstructure and Defects in Nano crystalline Materials: Dislocations, Twins, stacking faults and voids, Grain Boundaries, triple and declinations. Effect of Nano-dimensions on Materials Behavior: Elastic properties, Melting Point, Diffusivity, Grain growth characteristics, enhanced solid solubility. Magnetic Properties: Soft magnetic nanocrystalline alloy, Permanent magnetic nanocrystalline materials, Giant Magnetic Resonance, Electrical Properties, Optical Properties, Thermal Properties and Mechanical Properties.

UNIT-III:

SYNTHESIS ROUTES: Bottom up approaches: Physical Vapor Deposition, Inert Gas Condensation, Laser Ablation, Chemical Vapor Deposition, Molecular Beam Epitaxy, Sol-gel method, Self-assembly. Top down approaches: Mechanical alloying, Nano-lithography. Consolidation of Nano powders: Shock wave consolidation, Hot iso-static pressing and Cold iso-static pressing, Spark plasma sintering.

UNIT-IV:

TOOLS TO CHARACTERIZE NANOMATERIALS: X-Ray Diffraction (XRD), Small Angle X-ray scattering, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Scanning Tunneling Microscope (STM), Field Ion Microscope (FEM), Three-dimensional Atom Probe (3DAP), Nano indentation

UNIT-V:

APPLICATIONS OF NANO MATERIALS: Nano-electronics, Micro- and Nanoelectromechanical systems (MEMS/NEMS), Nano sensors, Nano catalysts, Food and Agricultural Industry, Cosmetic and Consumer Goods, Structure and Engineering, Automotive Industry, Water-Treatment and the environment, Nano-medical applications, Textiles, Paints, Energy, Defense and Space Applications, Concerns and challenges of Nanotechnology.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA–533003, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

TEXT BOOKS:

- 1) Introduction to Nano Technology by Charles. P. Poole Jr& Frank J. Owens. Wiley India Pvt. Ltd.
- 2) Nano Materials- A.K.Bandyopadhyay/ New Age Publishers.
- 3) Nano Essentials- T.Pradeep/TMH.

REFERENCE BOOKS:

- 1. Solid State physics by Pillai, Wiley Eastern Ltd.
- 2. Introduction to solid state physics 7th edition by Kittel. John Wiley & sons (Asia) Pvt Ltd.

Course outcomes: At the end of the course, student will be able to

CO1: Explain about nano-structured materials and their applications.

CO2: Apply knowledge about the nano crystalline materials, their properties and defects.

CO3: Justify various techniques of nanofabrication.

CO4: Apply the tools to characterize nano materials.

CO5: Analyze the applications of nano materials.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

		L	Т	Р	С				
		3	0	0	3				
ELECTRONIC MEASUREMENTS AND INSTRUMENTATION									
(OE)									

UNIT I

Performance characteristics of instruments, Static characteristics; Accuracy, Resolution, Precision, Expected value, Error, Sensitivity, Dynamic Characteristics, speed of response, Fidelity, Lag and Dynamic error. Types of errors in measurements and their analysis, Design of multi-range AC , DC meters (voltmeter & ammeter) and ohmmeter(series & shunt type) using D'arsonval movement. True rms meter.

UNIT II

Specifications and designing aspects of Signal Generators – AF sine and square wave signal generators, Function Generators, Random noise generators, Arbitrary waveform generators. Wave Analyzers, Harmonic Distortion Analyzers, Spectrum Analyzers, Digital Fourier Analyzers.

UNIT III

Oscilloscopes- general purpose CROs; block diagram , functions and implementation of various blocks, specifications, various controls and their functions , types of probes used in CROs. Measurement of frequency and phase difference using Lissajous patterns, Special purpose CROs; sampling oscilloscope, analog storage oscilloscope, digital storage oscilloscope

UNIT IV

Bridge circuits- Wheat stone bridge, measurement of very low resistance, Measurement of inductance- Maxwell's bridge, Anderson bridge, Measurement of capacitance-Schearing Bridge. Wien Bridge, Errors and precautions in using bridges, Q-meter; principle of operation, measurement methods and sources of errors, Counters: principle of operation -modes of operation- totalizing mode, frequency mode and time period mode- sources of errors.

UNIT V

Transducers- active & passive transducers: Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers. Measurement of physical parameters temperature, force, pressure, velocity, acceleration and displacement

TEXT BOOKS:

- 1. Electronic instrumentation, second edition H.S. Kalsi, Tata McGrawHill, 2004.
- 2. Modern Electronic Instrumentation and Measurement Techniques A.D. HelfrickandW.D. Cooper, PHI, 5th Edition, 2002.

REFERENCES:

- 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 3rd Edition, 2013.
- 2. Electrical and Electronic Measurement and Instrumentation A.K. Sawhney. Dhanpat Rai & Co, 12thEdition,2002.

Course Outcomes:

The student will be able to

- 1. Select the instrument to be used based on the requirements.
- 2. Understand and analyze different signal generators and analyzers.
- 3. Understand the design of oscilloscopes for different applications.
- 4. Design different transducers for measurement of different parameters.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

		L	Т	Р	С			
		3	0	0	3			
PRINCIPLES OF SIGNAL PROCESSING								
(OE)								

Unit I:

Discrete Signals and Systems- A Review – Introduction to DFT – Properties of DFT – Circular Convolution – Filtering methods based on DFT – FFT Algorithms –Decimation in time Algorithms, Decimation in frequency Algorithms – Use of FFT in Linear Filtering.

Unit II:

Structures of IIR filters – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation.

Unit III:

Structures of FIR filters – Linear phase FIR filter – Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques

Unit IV:

Multirate signal processing: Basic building blocks of multirate DSP, Decimation, Interpolation, Sampling rate conversion by a rational factor, Multistage Sampling Rate Converters.

Unit V:

Adaptive Filters: Introduction, LMS and RLS Adaptation Algorithms, Applications of adaptive filtering to equalization, noise cancellation.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI

Reference Books:

- 1. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra L. Harris, Thomson, 2007.
- 2. Understanding Digital Signal Processing 2nd Edition by Richard G.Lyons

Course Outcomes:

- 1. Use the FFT algorithm for solving the DFT of a given signal
- 2. Design a Digital filter (FIR&IIR) from the given specifications
- 3. Realize the FIR and IIR structures from the designed digital filter.
- 4. Use the Multirate Processing concepts in various applications
- 5. Apply the Adaptive signal processing concepts to various signal processing applications